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Abstract 
The formulae for the structure factor of a dislocation 
superlattice, obtained in paper I, are analyzed in a 
variety of situations. The plane-wave image profiles 
of a twist boundary perpendicular to the crystal sur- 
face are plotted for various values of the satellite 
order I and (hb), where h is the diffraction vector and 
b is the Burgers vector. The kinematic profiles are in 
qualitative agreement with the superstructure factor 
of the dislocation superlattice. Because of extinction, 
the dynamical profiles appreciably differ from the 
kinematic ones. The X-ray channelling through the 
twist boundary is demonstrated. 

1. Introduction 
In the previous paper (Vardanyan & Petrosyan, 1987), 
hereafter referred to as I, two-wave X-ray diffraction 
by a pure low-angle twist boundary perpendicular to 
the crystal surface is considered in the case when the 
dislocation superlattice (SL) period is much less than 
the crystal extinction length. The directions of the 
diffraction maxima were found (I-19) and a formula 
for the superstructure factor was obtained (I-23). In 
the present study the analysis of these formulae is 
performed. The superstructure-factor value on a 
boundary plane, as well as its asymptotic behavior 
far from the boundary, is determined. The low-angle 
twist boundary plane-wave image profiles are plotted 
in the kinematic and dynamical approaches. Absorp- 
tion is not taken into account. The symbols are the 
same as those in I. 

2. Analysis of the general formula (1-23) 

Taking into account (I-21) and (I-22), we consider 
only the case l - n  and hb>0 ,  so the sign of n is 
determined by that of y. 

On a boundary plane Y = 0 (q = 1), from (1-23) we 
obtain 

Mt.,=2(-i)"(~rl)-lsin(~rn/2), (1) 
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where we have used the following ratios (Bateman & 
Erdelyi, 1953): 

F( a, b; c; 1 ) -  
F ( c ) F ( c - a - b )  
F ( c - a ) F ( c - b )  

r(x)r(1-x)= 7r/sin (Trx). 

For the particular values of l, from (1), we have 

60, at 1 = 0 (2a) 

Mr,, = 0 at l = 2k # 0 (2b) 

-2i(zd)  -~ at l = 2 k -  1, (2c) 

where 6 o is the Kronecker symbol. 
The boundary plane is a SL of stacking faults with 

the phase shift zrn. Equations (2) coincide with the 
analogous formulae obtained by Vardanyan & 
Manoukyan (1982, 1985). Far from the boundary, at 
I YI ~ oo (q ~ 0), from (I-23) we obtain the following 
asymptotic formulae: 

r(l/2) 
( - i ) " F ( n / 2 ) F [ ( l - n ) / 2 +  1] q(l-n)/4 

at l >  n (3a) 

Mr,,='  ( - i ) t ( 1 - q l 2 / 4 )  a t l = n > 0  (3b) 

(_i)t+ , F( I/2) sin (~rl/2) 
1rl/2F[(l+ 1)/2] (q/4)t/2 

at l= -n>0 .  (3c) 
Here we have used the approximation 

F(a, b; c; q)= 1 +(ab/c)q. 

The formulae (3b) and (I-21) show that the value 
l = n > 0 corresponds to the principal maximum of 
the block y > 0 and the value l = n < 0 corresponds 
to that of the block y < 0. On the basis of (I-19), we 
find the angular distance between the principal 
maxima of the blocks: 

AO = 2st/ h = n/ zoh = b/ zo 
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Table 1. The magnitudes ]Mt,,lm~, locations Ym and 
half-widths A Ym of the superstructure maxima for a 

few values of satellite number I and n = hb 

/, n IM~,.Ima~ 7 r Y m  ~rAYm l, n IM~..Im,~ ~ r Y m  ~raYm 
0, 2 1 0 0"693 1,1 - -  - -  - -  
0 ,4  1 0 0.347 1,3 0.855 0.112 0.652 
O, 6 1 0 0.231 1, 5 0.850 0.065 0.366 
O, 8 1 0 O-173 1, 7 0"847 0.047 0.256 
2,2  - -  - -  - -  3,1 0.285 0.112 0.652 

• 2, 4 0"770 0-277 0.743 3, 3 0.266 0.024 0"124 
2, 6 0.750 0" 173 0.433 3, 5 0.265 0"016 0"075 
2, 8 0.744 0-128 0.318 0.725 0.402 0"810 
4, 2 0.385 0.277 0-743 3, 7 0-264 0" 100 0.051 
4 ,4  0.333 0-100 0.185 0.297 0.270 0.460 
4, 6 0.327 0"065 0-120 5,1 0.170 0.065 0.366 

0"696 0"510 0.388 5, 3 0.159 0.016 0.075 
4, 8 0"324 0.050 0.087 0"435 0.402 0.810 

0-656 0"358 0.478 5, 5 0"160 0.008 0.043 
6, 2 0.250 0"173 0-433 0"360 0.184 0.221 
6, 4 0.218 0.065 0-120 5, 7 0.158 0-050 0-029 

0.464 0"510 0.338 0.349 0.124 0"143 
6, 6 0"214 0.044 0"076 0-678 0.602 0"831 

0"374 0"255 0.236 7,1 0.121 0"047 0.256 
6, 8 0.212 0"032 0-054 7, 3 0.113 0.010 0.051 

0.357 0"184 0.158 0.297 0.270 0.460 
0.664 0"665 0"842 7, 5 0.113 0.005 0"029 

8, 2 0"186 0"128 0"318 0.249 0.124 0.143 
8, 4 0" 162 0"050 0"087 0.484 0.602 0.831 

0.328 0"358 0"478 7, 7 0.112 0.005 0"023 
8, 6 0" 159 0"032 0.054 0.241 0.086 0.097 

0"268 0-184 0-158 0.382 0"327 0"241 
0.498 0.665 0.842 

8, 8 0" 158 0"024 0"025 
0.258 0.132 0.107 
0"387 0-390 0-253 

in agreement with (I-1). There are (Inl-1) satellites 
between two principal maxima. From the theorem on 
the number of Gauss hypergeometric function zeros 
(Runckel, 1971), the number N of IM,.,I maxima may 
be determined as 

(min ( [ ( l+ l ) /2] , [ (n+l ) /2] )  a t l ~ n > 0  

N = ~ [ ( l -  1)/2] at 1 = n (4) 

La0 at l = 0  

at l > 0 ,  n < 0 ,  

where [x] is the largest integer <-x. 
If l > 0 and lab > 0, then all the maxima lie on the 

semiplane y > 0. 
The magnitudes, locations and half-widths of the 

I M~.I maxima for a few values of I and n are given 
in Table 1. 

We note the following: 
(a) the maxima form an increasing sequence; 
(b) with increasing I the maxima decrease; 
(c) for a given l the values of the maxima and 

their half-widths weakly depend on n (except for the 
furthest from the boundary maximum); 

(d) with increasing n the maxima shift towards 
the boundary; 

(e) the maxima are located on one side of the 
boundary, except for the case l = 0; 

(f)  for large l and n the maxima separation 
decreases, and they may merge. 

Consider the cases of I being 0, even and odd. 

(1) l - O  

In this case, from (I-19), we have So=0, which 
corresponds to the satellite located in the middle of 
two principal maxima. The superstructure factor is 
defined by (I-25a): 

M o ,  n = qlnl/4= exp (-Trn Y). (5) 

In the boundary plane, Y = 0, Mo,n = 1 since at l = 0 
n is an even number and the phase shift is a multiple 
of 2¢r. Far from the boundary Mo,, decreases rapidly 
from both sides of the boundary (Fig. 1). At n = 0  
(hb = 0) we have Mo,o = 1, corresponding to the reflec- 
tion from an ideal crystal, i.e. in this case the boundary 
is invisible. The maximum half-width is equal to 

A y =  2 In 2/¢rlnl (6) 

and decreases with increasing I nl. 
(2) Even l 

Since I and n are of the same parity we set l = 2k > 0 
and n = +2r  (k and r are positive integers). From 
(I-19), we find the diffraction maxima directions: 

S2k = kZo 1. (7) 

The superstructure factor is defined by (I-25b) and 
(I-25c) or by ( I -Al lb ) .  At hb>0 ,  the diffraction 
maxima for l > 0 and l < 0 are due to the reflections 
from the blocks y > 0 and y < 0, respectively. The 
dependences of [M2k,2r I v e r s u s  Y are presented in 
Fig. 2. 

For the diffraction maximum I = 2 we have [see 
(I-B6)] 

M2,2r-- rq(r-')/2(1 - q). (8) 

The superstructure factor of the principal maximum 
is 

M2,2 = 1 - q. (9) 

The satellite superstructure factor has a maximum 

]ME,2,Jmax=[Er/(r+l)][(r-1)/(r+l)] (`-1)/2 (10) 

at 

q l = ( r - 1 ) / ( r + l )  (11) 

-1.0 

Mo.n 

. , . . . . .  ~ y  
-0.1 0 0.1 1.0 

Fig. 1. Function ]Mo.,(Y)]. (a) n=2;  (b) n=4;  (c) n=6;  (d) 
n=8. 
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or at 

Y t = 2 , r - ~ l n [ ( r + l ) / ( r - 1 ) ] .  (12) 

The value of [ M 2 , 2 r l m a x  is nearly independent of n and 
is approximately equal to 

I M2.zrlmax = 2e-I = 0.74. (13) 

With increasing r the location of the maximum shifts 
towards the boundary.  

(3) Odd 1 
Let 1 - 2 k -  1 (k is a positive integer). From (I-19) 

we find the diffraction maxima directions: 

S2k_l=(2k--1)/Ezo . " (14) 

The superstructure factor is defined by (I-25d) and 
(I-25e) or (I-A13b) and (I-A14b). 

As seen from (2c), at odd I the reflection from the 
boundary between blocks takes place for all the 
diffraction maxima of an odd l, contrary to the case 
of an even l when only the satellite l - -0  is reflected 
from the boundary.  This is because at odd n the phase 
shift is 7r times an odd number Another difference is 
that the diffraction maxima of an odd order are reflec- 
ted from both blocks, but the reflection is asymmetric 
with respect to the boundary (Figs. 3 and 4). At hb > 0 
a n d / > 0  the curve ]Mz, n(Y)l has a faint 'tail '  in the 
block y < 0. 

3. Kinematic profiles 

Under the condition of 

D . ~ A o , =  ~ / IMo,  I, (15) 

where D is the crystal thickness, A~., and A are the 
SL and crystal extinction lengths, respectively, and 
using (I-11) for the /th-order diffraction maximum 
intensity we obtain the kinematic formula 

kin  ( ¢rD/X)21 M,. 12. R,., = , (16) 

M2, D 

1.0 

b 

0 " / V  .__ , ~ , ~ ~ 

0:1 1 0 ;~'Y 0 

Fig. 2. Function ]M2.,(Y)[. (a) n=2; (b) n=4; (c) n=6; (d) 
n=8. 

The forms of the kinematic image profiles are qualita- 
tively the same as that of the IMo,( Y)I (see Fig. 4 of 
paper I). 

At l = 0 there is only one fringe with maximum 
intensity on the boundary,  the intensity profile being 
symmetric with respect to the boundary. The fringe 
width is determined by (6): 

z lY=  (~rlnl)-) In 2 (17) 

and decreases with increasing Inl. 
From (1-16) and (I-1) we obtain 

Ay=(zr ln])- lzoln2=(zrhAO)- t  ln2,  (18) 

Le. the fringe width is less than the effective thickness 
of the dislocation wall. It means that the spatial 
harmonic l = 0 propagates through a narrow 'channel '  
along the boundary. With the increasing disorienta- 
tion of the blocks the 'channel '  width contracts. 

At l = 1 and l = 2 there is a single fringe, shifted 
from the boundary. With increasing n the fringe width 
decreases and the fringe center shifts towards the 
boundary,  while the intensity is almost the same.* 
For these spatial harmonics the diffraction channel 
is away from the boundary. At l -> 3 the image consists 
of a number of parallel fringes, the number of which 
is determined by the number of I Mt.,~] maxima (4). 

* In fact the intensity decreases since the crystal structure factor 
F h decreases with the increasing reflection order. The question 
here is about the relative intensity. 

a b 

-1.0 -0.1 0 0-1 1.0 ~'Y 

Fig. 3. Function IM,..(Y)I. (a) n = l ;  (b) n=3; (c) n=5. 

- I : 0  ' 

$~a,D 

1.0 ̧  

0"5 

-0.1 0 0;I 1;O:'zrY 

Fig. 4. Function ]M3..(Y)]. (a) n = l ;  (b) n=3; (c) n=5. 
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The further a fringe is from the boundary, the wider 
and more intense it is, with a relatively extended tail. 
Far from the boundary the fringe separation 
increases. For a given spatial harmonic l the fringes 
are from only one side of the boundary. At odd I the 
image has a short tail on the other side of the boun- 
dary. At l = n (the principal maximum of one of the 
blocks) the image has the form of a wide fringe at 
one side of the boundary with a number of parallel 
narrow fringes towards the boundary. 

4. Dynamical  profiles 

If the condition (15) does not hold then the wave 
multifold reflections cannot be neglected. In this case 
the reflection intensity is defined by (I-11). 

At s = st, from (I-11) we have 

Rdyn - l,. - sin 2 (TrAlMr,,[), (19) 

where 

A =  D/_A. (20) 
dyn In Figs. 5-7 the plots of Rt,, ( Y )  for several values 

of I and n at A = 2 and 2-5 are given. The comparison 

Ao~l 

-1 .0  0 1:0 trY 
(a) 

-1 "0 0 1.0 
(b) 

~rY 

1.0 Ro,4 

-1 .0  0 1.0 'cry 

(c) 

Ro~ r 

-1 .0  O" 1.0 ~'Y 

(d) 

Fig. 5. Dynamical profiles for 1=0. (a) n=2, A=2; (b) n=2, 
A=2.5; (c) n =4, A=2; (d) n=4, A=2.5. 

of the kinematic and dynamical profiles indicates that 
they differ significantly. For the dynamical profiles, 
the number of fringes and their widths depend on A. 
In the kinematic profiles, the intensity oscillations are 
due to the type of strain distribution present in the 
dislocation SL cell. On the dynamical profiles the 
intensity oscillations are associated with the Pendel- 
16sung oscillations analogous to those visible in ideal 
crystals. 

For the harmonics with even l ~ 0 the boundary 
image is one sided as in the kinematic case. For the 
harmonics with odd l, the image arises on both sides 
from the boundary (Fig. 7). Because of the Pendel- 
16sung effect the wide fringe of the principal 
maximum is either absent (A being an integer) or is 
a maximum of intensity (A being a semi-integer). 

As we have already noted, the spatial harmonic 
l = 0 at small depths has a sharp peak on the boun- 

R2,2, 

1"0' 

1.0 =z,Y 
(a) 

R2,2 

0 1 ~0 ~TrY 

(b) 

R2,4.. 

0 1.0 

(c) 
~-y 

" 

0 1.0 ~ rg  

(d) 

Fig. 6. Dynamical profiles for I=2. (a) n=2, A=2; (b) n=2, 
A=2.5; (c) n=4, A=2; (d) n=4, A=2.5. 
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dary. At depths when the dynamic scattering becomes 
essential this peak splits into a number of peaks 
arranged symmetrically with respect to the boundary 
(Fig. 5). 

/:/11, 

-1 .0 0 1[0 ' t rY 

(a) 

R1.1- 

-1.0 0 

(b) 

R•.a_ 
0 1 "0 '~rY 

(c) 

R13- 
1.0T 

- 0 1-0 ~ :~rY 

(d) 
Fig. 7. Dynamical profiles for l= 1. (a) n = 1, A =2; (b) n = 1, 

A=2.5; (c) n=3, A=2;(d) n=3, A=2.5. 

5. Concluding remarks 
The basic rules obtained in considering X-ray diffrac- 
tion by a crystal with a twist boundary perpendicular 
to the crystal surface make it possible to investigate 
the structure of the boundary-side layer of bicrystals. 
The direct-image method (Amelinckx & Dekeyser, 
1959) and the diffraction-image method suggested in 
this work complement each other, but the latter makes 
it possible to perform a more detailed study of the 
boundary-side layer structure. In the present work 
we did not take into account wave-field absorption 
and the incident-beam divergence. Absorption is 
important for thick crystals and will cause softening 
of the Pendelli~sung fringe contrast due to the 
anomalous absorption effect. The incident beam 
divergence, essential in the X-ray case, leads to the 
consideration of an incident spherical wave. In this 
case the form and the arrangement of the Pendelli~sung 
fringes will be different. 

It can be shown that if there is a deviation from 
the periodicity in SL, the situation is analogous to 
the thermal diffuse scattering of X-rays by crystals 
and can be described by an analog of the Debye- 
Waller factor. 
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Abstract 
Antisymmetric characteristics of 230 (Fedorov) G 3 

space groups are constructed. By application of a 
partial cataloguing method based on a newly defined 
term of antisymmetric characteristic type, a partial 
catalogue of simple and multiple antisymmetry M " -  

0108-7673/87/030326-12501.50 

type space groups and numbers of these groups are 
obtained. 

The G~ space groups of simple and multiple antisym- 
metry, derived from the 230 Fedorov G 3 space groups, 
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